Advancing Digital Image-Based Recognition of Soil Water Content: A Case Study in Bailu Highland, Shaanxi Province, China

Author:

Zhang Yaozhong1,Zhang Han1ORCID,Lan Hengxing23,Li Yunchuang4ORCID,Liu Honggang4ORCID,Sun Dexin1,Wang Erhao1,Dong Zhonghong1

Affiliation:

1. Key Laboratory of Highway Construction Technology and Equipment of the Ministry of Education, Chang’an University, Xi’an 710064, China

2. State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

3. School of Geological Engineering and Geomatics, Chang’an University, Xi’an 710064, China

4. China Construction First Group Corporation Limited, Xi’an 710075, China

Abstract

Soil water content (SWC) plays a vital role in agricultural management, geotechnical engineering, hydrological modeling, and climate research. Image-based SWC recognition methods show great potential compared to traditional methods. However, their accuracy and efficiency limitations hinder wide application due to their status as a nascent approach. To address this, we design the LG-SWC-R3 model based on an attention mechanism to leverage its powerful learning capabilities. To enhance efficiency, we propose a simple yet effective encoder–decoder architecture (PVP-Transformer-ED) designed on the principle of eliminating redundant spatial information from images. This architecture involves masking a high proportion of soil images and predicting the original image from the unmasked area to aid the PVP-Transformer-ED in understanding the spatial information correlation of the soil image. Subsequently, we fine-tune the SWC recognition model on the pre-trained encoder of the PVP-Transformer-ED. Extensive experimental results demonstrate the excellent performance of our designed model (R2 = 0.950, RMSE = 1.351%, MAPE = 0.081, MAE = 1.369%), surpassing traditional models. Although this method involves processing only a small fraction of original image pixels (approximately 25%), which may impact model performance, it significantly reduces training time while maintaining model error within an acceptable range. Our study provides valuable references and insights for the popularization and application of image-based SWC recognition methods.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3