Investigating the Effect of Dimension Parameters on Sound Transmission Losses in Nomex Honeycomb Sandwich

Author:

Wang DaORCID,Xie SuchaoORCID,Feng Zhejun,Liu Xiang,Li Yingli

Abstract

In this study, an impedance tube test was performed to explore the influence of various dimension parameters of Nomex honeycomb sandwich core material on sound transmission loss (STL). The parameters investigated included the size of the honeycomb cells and thickness of the face sheets and honeycomb cores, and the effects of single- and double-layered sandwich structures were also explored. The boundary element and finite element methods were used to simulate test results. The results show that the size of the honeycomb cells has an insignificant effect on STL. Increasing the thickness of face sheets can move the STL valley point of the material at high frequency (around 5 kHz) in the low-frequency direction and increase the STL in parts of the high frequency band. Increasing the thickness of the honeycomb core can improve STL, on the whole, but the magnitude of the improvement effect becomes weakened after the thickness of the core reaches 30 mm. The STL of double-layered structures was found to be superior to that of the single-layered structures. The simulations reveal that the trends in the STL curves of the honeycomb sandwich panels are influenced by the structural mode of the panels, and are related to the resonance of the materials. The results and relevant conclusions obtained through the above research verify that the law of influence of the structure dimension parameters on the STL measured by the impedance tube is similar to that of the large panel. This can provide a reference for the application of the impedance tube test method in structural noise reduction design.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3