Multi-Task Learning U-Net for Single-Channel Speech Enhancement and Mask-Based Voice Activity Detection

Author:

Lee Geon Woo,Kim Hong KookORCID

Abstract

In this paper, a multi-task learning U-shaped neural network (MTU-Net) is proposed and applied to single-channel speech enhancement (SE). The proposed MTU-based SE method estimates an ideal binary mask (IBM) or an ideal ratio mask (IRM) by extending the decoding network of a conventional U-Net to simultaneously model the speech and noise spectra as the target. The effectiveness of the proposed SE method was evaluated under both matched and mismatched noise conditions between training and testing by measuring the perceptual evaluation of speech quality (PESQ) and short-time objective intelligibility (STOI). Consequently, the proposed SE method with IRM achieved a substantial improvement with higher average PESQ scores by 0.17, 0.52, and 0.40 than other state-of-the-art deep-learning-based methods, such as the deep recurrent neural network (DRNN), SE generative adversarial network (SEGAN), and conventional U-Net, respectively. In addition, the STOI scores of the proposed SE method are 0.07, 0.05, and 0.05 higher than those of the DRNN, SEGAN, and U-Net, respectively. Next, voice activity detection (VAD) is also proposed by using the IRM estimated by the proposed MTU-Net-based SE method, which is fundamentally an unsupervised method without any model training. Then, the performance of the proposed VAD method was compared with the performance of supervised learning-based methods using a deep neural network (DNN), a boosted DNN, and a long short-term memory (LSTM) network. Consequently, the proposed VAD methods show a slightly better performance than the three neural network-based methods under mismatched noise conditions.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference40 articles.

1. Speech enhancement using a minimum-mean square error short-time spectral amplitude estimator

2. Monaural Sound Source Separation by Nonnegative Matrix Factorization With Temporal Continuity and Sparseness Criteria

3. Joint optimization of masks deep recurrent neural networks for monaural source separation;Huang;IEEE/ACM Trans. Audio, Speech Lang. Process.,2015

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3