Supervised Single Channel Speech Enhancement Method Using UNET

Author:

Hossain Md. Nahid1,Basir Samiul1ORCID,Hosen Md. Shakhawat1,Asaduzzaman A.O.M.1,Islam Md. Mojahidul1,Hossain Mohammad Alamgir1,Islam Md Shohidul12ORCID

Affiliation:

1. Department of Computer Science and Engineering, Islamic University, Kushtia 7003, Bangladesh

2. Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), The City University of Hong Kong, Kowloon, Hong Kong

Abstract

This paper proposes an innovative single-channel supervised speech enhancement (SE) method based on UNET, a convolutional neural network (CNN) architecture that expands on a few changes in the basic CNN architecture. In the training phase, short-time Fourier transform (STFT) is exploited on the noisy time domain signal to build a noisy time-frequency domain signal which is called a complex noisy matrix. We take the real and imaginary parts of the complex noisy matrix and concatenate both of them to form the noisy concatenated matrix. We apply UNET to the noisy concatenated matrix for extracting speech components and train the CNN model. In the testing phase, the same procedure is applied to the noisy time-domain signal as in the training phase in order to construct another noisy concatenated matrix that can be tested using a pre-trained or saved model in order to construct an enhanced concatenated matrix. Finally, from the enhanced concatenated matrix, we separate both the imaginary and real parts to form an enhanced complex matrix. Magnitude and phase are then extracted from the newly created enhanced complex matrix. By using that magnitude and phase, the inverse STFT (ISTFT) can generate the enhanced speech signal. Utilizing the IEEE databases and various types of noise, including stationary and non-stationary noise, the proposed method is evaluated. Comparing the exploratory results of the proposed algorithm to the other five methods of STFT, sparse non-negative matrix factorization (SNMF), dual-tree complex wavelet transform (DTCWT)-SNMF, DTCWT-STFT-SNMF, STFT-convolutional denoising auto encoder (CDAE) and casual multi-head attention mechanism (CMAM) for speech enhancement, we determine that the proposed algorithm generally improves speech quality and intelligibility at all considered signal-to-noise ratios (SNRs). The suggested approach performs better than the other five competing algorithms in every evaluation metric.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3