Autonomous Navigation Framework for Intelligent Robots Based on a Semantic Environment Modeling

Author:

Joo Sung-HyeonORCID,Manzoor SumairaORCID,Rocha Yuri GoncalvesORCID,Bae Sang-HyeonORCID,Lee Kwang-HeeORCID,Kuc Tae-YongORCID,Kim Minsung

Abstract

Humans have an innate ability of environment modeling, perception, and planning while simultaneously performing tasks. However, it is still a challenging problem in the study of robotic cognition. We address this issue by proposing a neuro-inspired cognitive navigation framework, which is composed of three major components: semantic modeling framework (SMF), semantic information processing (SIP) module, and semantic autonomous navigation (SAN) module to enable the robot to perform cognitive tasks. The SMF creates an environment database using Triplet Ontological Semantic Model (TOSM) and builds semantic models of the environment. The environment maps from these semantic models are generated in an on-demand database and downloaded in SIP and SAN modules when required to by the robot. The SIP module contains active environment perception components for recognition and localization. It also feeds relevant perception information to behavior planner for safely performing the task. The SAN module uses a behavior planner that is connected with a knowledge base and behavior database for querying during action planning and execution. The main contributions of our work are the development of the TOSM, integration of SMF, SIP, and SAN modules in one single framework, and interaction between these components based on the findings of cognitive science. We deploy our cognitive navigation framework on a mobile robot platform, considering implicit and explicit constraints for autonomous robot navigation in a real-world environment. The robotic experiments demonstrate the validity of our proposed framework.

Funder

Ministry of Trade, Industry and Energy

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3