Precise Measurement of the Surface Shape of Silicon Wafer by Using a New Phase-Shifting Algorithm and Wavelength-Tuning Interferometer

Author:

Miao FuqingORCID,Ahn SeokyoungORCID,Kim Yangjin

Abstract

In wavelength-tuning interferometry, the surface profile of the optical component is a key evaluation index. However, the systematic errors caused by the coupling error between the higher harmonics and phase shift error are considerable. In this research, a new 10N − 9 phase-shifting algorithm comprising a new polynomial window function and a DFT is developed. A new polynomial window function is developed based on characteristic polynomial theory. The characteristic of the new 10N − 9 algorithm is represented in the frequency domain by Fourier description. The phase error of the new algorithm is also discussed and compared with other phase-shifting algorithms. The surface profile of a silicon wafer was measured by using the 10N − 9 algorithm and a wavelength-tuning interferometer. The repeatability measurement error across 20 experiments was 2.045 nm, which indicates that the new 10N − 9 algorithm outperforms the conventional phase-shifting algorithm.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference52 articles.

1. Improved algorithms for wavelength scanning interferometry: Application to the simultaneous measurement of surface topography and optical thickness variation in a transparent parallel plate;Hibino;Proc. SPIE,2002

2. Inductance bridge for sensitive displacement measurements over long periods

3. Online Postweld Shift Measurement of Butterfly-Type Laser Module Employing High-Resolution Capacitance Displacement Measurement System;Liu;IEEE LEOS Ann. Meeting Conf. Proc.,2010

4. Three-dimensional surface measurement using the confocal scanning microscope

5. Three-dimensional profile measurement of the blade based on surface structured light

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3