The Use of Neural Networks in Combination with Evolutionary Algorithms to Optimise the Copper Flotation Enrichment Process

Author:

Jamróz DariuszORCID,Niedoba TomaszORCID,Pięta Paulina,Surowiak Agnieszka

Abstract

The paper presents a way of combining neural networks with evolutionary algorithms in order to find optimal parameters of the copper flotation enrichment process. The neural network was used in order to build a model describing the flotation process. The network learning was carried out with the use of samples from previous empirical measurements of the actual process. The model created in this way made it possible to find optimal parameters not only from among the measurement spaces, but also those that go beyond the measurements. Then, evolutionary algorithms were used in order to find optimal flotation parameters. The learned neural network previously described was used to calculate the criterion in the evolutionary algorithm.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference61 articles.

1. Mineral Processing and Beneficiation;Laskowski,1989

2. Mechanical Flotation;Konopacka,2005

3. Foundations of Theory and Practice of Minerallurgy;Drzymała,2009

4. Methods and Models of Mathematical Statistics in Mineral Processing;Tumidajski,2009

5. Studies on Polish copper ore beneficiation in Jameson cell

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3