Prediction and Optimisation of Copper Recovery in the Rougher Flotation Circuit

Author:

Amankwaa-Kyeremeh Bismark1,McCamley Conor2,Zanin Max13ORCID,Greet Christopher4,Ehrig Kathy2,Asamoah Richmond K.1

Affiliation:

1. University of South Australia, UniSA STEM, Future Industries Institute, Mawson Lakes, Adelaide, SA 5095, Australia

2. BHP Olympic Dam, Adelaide, SA 5000, Australia

3. School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia

4. Magotteaux Pty Ltd., Rear of 31 Cormack Rd., Wingfield, SA 5013, Australia

Abstract

In this work, the prediction and optimisation of copper flotation has been conducted in the rougher flotation circuit. The copper-recovery prediction involved the application of support vector machine (SVM), Gaussian process regression (GPR), multi-layer perceptron artificial neural network (ANN), linear regression (LR), and random forest (RF) algorithms on 15 rougher flotation variables at the BHP Olympic Dam. The predictive models’ performance was assessed using linear correlation (r), root mean square error (RMSE), mean absolute percentage error (MAPE), and variance accounted for (VAF). A simulated annealing (SA) optimisation algorithm, particle swarm optimisation (PSO) algorithm, surrogate optimisation (SO) algorithm, and genetic algorithm (GA) were investigated, using the GPR predictive function, to determine the optimal operating condition for maximising copper recovery. The predictive function of the best-performing model was extracted and used in optimising the flotation circuit. The results showed that the GPR model developed with the matern 3/2 kernel function makes the most precise copper-recovery prediction as compared to the other investigated predictive models, obtaining r values > 0.96, RMSE values < 0.42, MAPE values < 0.25%, and VAF values > 94%. A hypothetical optimisation solution assessment showed that SA provides the best set of solutions for the maximisation of rougher copper recovery, obtaining a throughput of 638.02 t/h and a total net gain percentage of 14%–15.5% over the other optimisation algorithms with a maximum copper recovery of 94.76%. The operational benefits of implementing these algorithms have been highlighted.

Funder

Future Industries Institute of the University of South Australia

Australia-India Strategic Research Fund

Australian Research Council Centre of Excellence for Enabling Eco-Efficient Beneficiation of Minerals

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3