Heavy Metal Extraction under Environmentally Relevant Conditions Using 3-Hydroxy-2-Naphthoate- Based Ionic Liquids: Extraction Capabilities vs. Acute Algal Toxicity

Author:

Pirkwieser Philip,López-López José A.ORCID,Schagerl Michael,Kandioller WolfgangORCID,Keppler Bernhard K.,Moreno CarlosORCID,Jirsa FranzORCID

Abstract

We investigated the applicability of three task-specific ionic liquids (ILs) as heavy metal extracting agents by contrasting extraction capabilities with algal toxicity. The compounds tested were trihexyltetradecylphosphonium-, methyltrioctylphosphonium- and methyltrioctylammonium 3-hydroxy-2-naphthoates. Experiments were performed to assess if these ILs can provide environmentally safe residual concentrations of the target metals after extraction. Both pure water and natural mineral water samples were spiked with 20 µg L−1 of Cu, Ag, Cd, Hg and Pb, respectively. Quantitative extraction (> 99%) of Hg and Ag was achieved. Cu and Hg were below the respective no-observed-effect-concentrations (NOECs) after extraction and Ag below 0.03 µg L−1. Acute toxicity assays were conducted using two freshwater green algae Raphidocelis subcapitata and Tetradesmus obliquus. Growth inhibition and maximum photochemical quantum yield of photosystem II after 72 h were assessed. ILs were less toxic than similar compounds, but still must be classified as acute toxicants for algae. An inhibiting effect on both growth and chlorophyll fluorescence was observed. The leaching of the ILs into the samples remains a limitation regarding their environmental-friendly applicability. Nonetheless, the extremely efficient removal of Cu, Ag and Hg under environmentally relevant conditions calls for further research, which should focus on the immobilization of the ILs.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3