Role of Fungi in Biodegradation of Imidazolium Ionic Liquids by Activated Sewage Sludge

Author:

Klein Joanna1,Łuczak Justyna1ORCID,Brillowska-Dąbrowska Anna2ORCID

Affiliation:

1. Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland

2. Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland

Abstract

Ionic liquids (ILs), due to their specific properties, can play the role of persistent water contaminants. Fungi manifest the ability to decompose hardy degradable compounds, showing potential in the biodegradation of ILs, which has been studied extensively on sewage sludge; however, attention was drawn mainly to bacterial and not fungal species. The aim of the research was to determine the significance of fungi in ILs’ biodegradation to extend the knowledge and possibly point out ways of increasing their role in this process. The research included: the isolation and genetic identification of fungal strains potentially capable of [OMIM][Cl], [BMIM][Cl], [OMIM][Tf2N], and [BMIM][Tf2N] degradation, adjustment of the ILs concentration for biodegradability test by MICs determination and choosing strains with the highest biological robustness; inoculum adaptation tests, and finally primary biodegradation by OECD 301F test. The study, conducted for 2 mM [OMIM][Cl] as a tested substance and consortium of microorganisms as inoculum, resulted in an average 64.93% biodegradation rate within a 28-day testing period. For the individual fungal strain (Candida tropicalis), the maximum of only 4.89% biodegradation rate was reached in 10 days, then inhibited. Insight into the role of fungi in the biodegradation of ILs was obtained, enabling the creation of a complex overview of ILs toxicity and the possibilities of its biological use. However, only an inoculum consisting of a consortium of microorganisms enriched with a selected strain of fungi was able to decompose the IL, in contrast to that consisting only of an individual fungal strain.

Funder

Polish National Science Center

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3