Dynamic Multi-Objective Auction-Based (DYMO-Auction) Task Allocation

Author:

Baroudi UthmanORCID,Alshaboti MohammadORCID,Koubaa AnisORCID,Trigui Sahar

Abstract

In this paper, we address the problem of online dynamic multi-robot task allocation (MRTA) problem. In the existing literature, several works investigated this problem as a multi-objective optimization (MOO) problem and proposed different approaches to solve it including heuristic methods. Existing works attempted to find Pareto-optimal solutions to the MOO problem. However, to the best of authors’ knowledge, none of the existing works used the task quality as an objective to optimize. In this paper, we address this gap, and we propose a new method, distributed multi-objective task allocation approach (DYMO-Auction), that considers tasks’ quality requirement, along with travel distance and load balancing. A robot is capable of performing the same task with different levels of perfection, and a task needs to be performed with a level of perfection. We call this level of perfection quality level. We designed a new utility function to consider four competing metrics, namely the cost, energy, distance, type of tasks. It assigns the tasks dynamically as they emerge without global information and selects the auctioneer randomly for each new task to avoid the single point of failure. Extensive simulation experiments using a 3D Webots simulator are conducted to evaluate the performance of the proposed DYMO-Auction. DYMO-Auction is compared with the sequential single-item approach (SSI), which requires global information and offline calculations, and with Fuzzy Logic Multiple Traveling Salesman Problem (FL-MTSP) approach. The results demonstrate a proper matching with SSI in terms of quality satisfaction and load balancing. However, DYMO-Auction demands 20% more travel distance. We experimented with DYMO-Auction using real Turtlebot2 robots. The results of simulation experiments and prototype experiments follow the same trend. This demonstrates the usefulness and practicality of the proposed method in real-world scenarios.

Funder

King Abdulaziz City for Science and Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Auction-Based Behavior Tree Evolution for Heterogeneous Multi-Agent Systems;Applied Sciences;2024-09-05

2. A Review of Multi-UAV Task Allocation Algorithms for a Search and Rescue Scenario;Journal of Sensor and Actuator Networks;2024-08-23

3. An efficient two-stage evolutionary algorithm for multi-robot task allocation in nuclear accident rescue scenario;Applied Soft Computing;2024-02

4. Multi-criterion multi-UAV task allocation under dynamic conditions;Journal of King Saud University - Computer and Information Sciences;2023-10

5. Multi-task cooperative assignment of two-stage heterogeneous multi-UAV based on improved CBBA;2023 3rd International Symposium on Computer Technology and Information Science (ISCTIS);2023-07-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3