Fault Diagnosis for Wind Turbines Based on ReliefF and eXtreme Gradient Boosting

Author:

Wu Zidong,Wang XiaoliORCID,Jiang Baochen

Abstract

In order to improve the accuracy of fault diagnosis on wind turbines, this paper presents a method of wind turbine fault diagnosis based on ReliefF algorithm and eXtreme Gradient Boosting (XGBoost) algorithm by using the data in supervisory control and data acquisition (SCADA) system. The algorithm consists of the following two parts: The first part is the ReliefF multi-classification feature selection algorithm. According to the SCADA history data and the wind turbines fault record, the ReliefF algorithm is used to select feature parameters that are highly correlated with common faults. The second part is the XGBoost fault recognition algorithm. First of all, we use the historical data records as the input, and use the ReliefF algorithm to select the SCADA system observation features with high correlation with the fault classification, then use these feature data to build the XGBoost multi classification fault identification model, and finally we input the monitoring data generated by the actual running wind turbine into the XGBoost model to get the operation status of the wind turbine. We compared the algorithm proposed in this paper with other algorithms, such as radial basis function-Support Vector Machine (rbf-SVM) and Adaptive Boosting (AdaBoost) classification algorithms, and the results showed that the classification accuracy using “ReliefF + XGBoost” algorithm was higher than other algorithms.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3