Mechanical and Thermal Behavior of Ultem® 9085 Fabricated by Fused-Deposition Modeling

Author:

Padovano Elisa,Galfione MarcoORCID,Concialdi Paolo,Lucco Gianni,Badini Claudio

Abstract

Fused-deposition modeling (FDM) is an additive manufacturing technique which is widely used for the fabrication of polymeric end-use products in addition to the development of prototypes. Nowadays, there is an increasing interest in the scientific and industrial communities for new materials showing high performance, which can be used in a wide range of applications. Ultem 9085 is a thermoplastic material that can be processed by FDM; it recently emerged thanks to such good properties as excellent flame retardancy, low smoke generation, and good mechanical performance. A deep knowledge of this material is therefore necessary to confirm its potential use in different fields. The aim of this paper is the investigation of the mechanical and thermal properties of Ultem 9085. Tensile strength and three-point flexural tests were performed on samples with XY, XZ, and ZX building orientations. Moreover, the influence of different ageing treatments performed by varying the maximum reached temperature and relative humidity on the mechanical behavior of Ultem 9085 was then investigated. The thermal and thermo-oxidative behavior of this material was also determined through thermal-gravimetric analyses.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference32 articles.

1. Design for manufacturing of surfaces to improve accuracy in Fused Deposition Modeling

2. A new part consolidation method to embrace the design freedom of additive manufacturing

3. Technological Forecasting & Social Change The cost of additive manufacturing: Machine productivity, economies of scale and technology-push;Baumers;Technol. Forecast. Soc. Chang.,2016

4. ASTM F2792-12a Standard Terminology for Additive Manufacturing Technologies;International,2020

5. Optimization of process parameters of FDM part for minimiizing its dimensional inaccuracy;Equbal;Int. J. Mech. Prod. Eng. Res. Dev.,2017

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3