Uncertainty Quantification of Process-Property-Structure Linkage for Fused Filament Fabrication Parts

Author:

Zhang Yongjie1,Moon Seung Ki1

Affiliation:

1. Singapore Centre for 3D Printing, School of Mechanical & Aerospace Engineering, Nanyang Technological University , Singapore 639793

Abstract

Abstract Due to the nature of additive manufacturing (AM), design and manufacturing are deeply coupled. Toolpaths are defined based on the part geometry, and in turn, these toolpaths can influence the bonding between adjacent toolpaths, especially for fused filament fabrication (FFF) process. In FFF, bonding between adjacent rasters is critical to the FFF part mechanical strength. The bonding is driven by factors such as thermal history and a deposition strategy, which are dictated by the geometry of a part and process parameters. In this research, a data-driven physics-based methodology is proposed to predict the mechanical properties of FFF parts using Bayesian inference. In the proposed methodology, geometry and variance in process parameters are used to quantify uncertainties in the mechanical properties. Empirical data derived from the mesostructure of specimens are utilized to generate priors of predictors. Hamilton Monte Carlo is then used to sample the posterior distribution. Subsequently, random draw from posterior predictive distribution is performed, and the results are validated against empirical data to establish the accuracy of the proposed methodology. The proposed methodology can provide more accurate prediction of the mechanical properties by considering the influence of geometry, process parameters and uncertainty in AM process.

Funder

National Research Foundation Singapore

Publisher

ASME International

Reference36 articles.

1. ISO/ASTM 52900: 2015 Additive manufacturing-General Principles-Terminology;International Organization for Standardization,2012

2. Identifying Uncertainty in Laser Powder Bed Fusion Additive Manufacturing Models;ASME J. Mech. Des.,2016

3. Process Optimization and Stochastic Modeling of Void Contents and Mechanical Properties in Additively Manufactured Composites;Compos. Part B: Eng.,2019

4. Data-Driven Design Strategy in Fused Filament Fabrication: Status and Opportunities;J. Comput. Des. Eng.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3