Towards Piston Fine Tuning of Segmented Mirrors through Reinforcement Learning

Author:

Guerra-Ramos DailosORCID,Trujillo-Sevilla Juan,Rodríguez-Ramos Jose Manuel

Abstract

Unlike supervised machine learning methods, reinforcement learning allows an entity to learn how to deploy a task from experience rather than labeled data. This approach has been used in this paper to correct piston misalignment between segments in a segmented mirror telescope. It was proven in simulations that the algorithm converges to a point where it learns how to move the piston actuators in order to maximize the Strehl ratio of the wavefront at the intersection.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference22 articles.

1. Phasing the mirror segments of the Keck telescopes II: the narrow-band phasing algorithm

2. Phasing the mirror segments of the Keck telescopes: the broadband phasing algorithm

3. Piston detection of a segmented mirror telescope using a curvature sensor: Preliminary results with numerical simulations;Rodriguez-Ramos,1997

4. Co-phasing of segmented mirror telescopes with curvature sensing;Orlov,2000

5. Large-scale piston error detection technology for segmented optical mirrors via convolutional neural networks

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3