Abstract
Unlike supervised machine learning methods, reinforcement learning allows an entity to learn how to deploy a task from experience rather than labeled data. This approach has been used in this paper to correct piston misalignment between segments in a segmented mirror telescope. It was proven in simulations that the algorithm converges to a point where it learns how to move the piston actuators in order to maximize the Strehl ratio of the wavefront at the intersection.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献