Piston Error Automatic Correction for Segmented Mirrors via Deep Reinforcement Learning

Author:

Li Dequan1,Wang Dong1,Yan Dejie1

Affiliation:

1. Space Optics Department, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

Abstract

The segmented mirror co-phase error identification technique based on supervised learning methods has the advantages of simple application conditions, no dependence on custom sensors, a fast calculation speed, and low computing power requirements compared with other methods. However, it is often difficult to obtain a high accuracy in practical application situations with this method because of the difference between the training model and the actual model. The reinforcement learning algorithm does not need to model the real system when operating the system. However, it still retains the advantages of supervised learning. Thus, in this paper, we placed a mask on the pupil plane of the segmented telescope optical system. Moreover, based on the wide spectrum, point spread function, and modulation transfer function of the optical system and deep reinforcement learning—without modeling the optical system—a large-range and high-precision piston error automatic co-phase method with multiple-submirror parallelization was proposed. Finally, we carried out relevant simulation experiments, and the results indicate that the method is effective.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3