Modeling the Distribution of Wild Cotton Gossypium aridum in Mexico Using Flowering Growing Degree Days and Annual Available Soil Water

Author:

Baez-Gonzalez Alma DeliaORCID,Melgoza-Castillo Alicia,Royo-Marquez Mario Humberto,Kiniry James R.ORCID,Meki Manyowa N.

Abstract

Climate change is expected to alter species distribution and habitat composition, with wild species being particularly vulnerable. Gossypium aridum, a wild cotton species in Mexico, has shown a decrease in habitat extent and population; however, the data are not precise. The objectives of this study are: (1) to develop a distribution model of G. aridum in Mexico, (2) to identify areas with environmental conditions similar to where the species currently maintains populations, and (3) to determine which variable, flowering growing degree days (FGDD) or annual available soil water (AASW, mm year−1), has greater influence on the distribution of the species. Geographic information system (GIS) software was used with datasets from two databases in Mexico that were partitioned for site characterization, model construction, calibration, validation, and sensitivity analysis. The range of 330–860 FGDD and 4–110 mm year−1 AASW best described the species habitat, according to results of seven precision and accuracy statistical tests. The model identified geographic regions throughout the country with similar conditions as the locations where the species has been observed, including some where no collections have not yet been registered in Mexican databases. FGDD, rather than AASW, showed greater influence on the distribution of the species. The generated information can be used to guide collection expeditions for G. aridum and to study climatic impact on species distribution. The approach using FGDD and AASW can be used in the modeling of wild cotton species that are valuable natural resources for crop improvement.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3