Loss and Gain in Potential Distribution of Threatened Wild Cotton Gossypium thurberi in Mexico under Future Climate

Author:

Baez-Gonzalez Alma DeliaORCID,Alcala-Carmona Kimberly A.,Melgoza-Castillo Alicia,Titulaer Mieke,Kiniry James R.

Abstract

Gossypium thurberi, a threatened wild cotton species native to northern Mexico and southwestern USA, is globally important because its agronomic traits can be introgressed into cultivated species to improve fiber quality and resistance to biotic and abiotic stressors. However, studies on the current and future potential distribution of the species are scarce. The objectives of this study were (1) to develop a distribution model of G thurberi using a Geographic Information System platform, (2) determine environmental factors that influence the current distribution of the species in Mexico, and (3) estimate the potential distribution of the species under current and future climates. We analyzed the following variables: Annual Available Soil Water (mm year−1, AASW), Flowering Growing Degree Days (FGDD), absolute minimum temperature (°C, Tminabs), and altitude (amsl, ALT). Results showed that the current potential distribution of G. thurberi in northern Mexico, estimated at 112,727 square kilometers, is projected to be drastically reduced by 77 and 86%, considering a possible increase in temperature of 1.5 °C and 2 °C in near-future (2021–2040) and mid-future (2041–2060) climates, respectively, and a 100 mm reduction in average annual precipitation under both climates. The greatest reduction will be in areas in Sonora (Mexico) adjoining Arizona (USA), where the largest populations of the species are currently reported. AASW, FGDD, and ALT jointly influence the distribution of G. thurberi, with AASW as the dominant factor under future climate change. The areas that may continue to harbor populations of G. thurberi under future climate will present AASW of 0.2–55.6 mm year−1, FGDD of 242–547, and ALT between 550 and 1561 amsl. The projected future potential distribution in the country includes new suitable areas, including one in the Trans-Mexican Volcanic Belt, that may serve as refuge areas. The findings can contribute to the design of more precise collection efforts and conservation strategies to prevent species extinction.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3