Extreme Learning Machine Enhanced Gradient Boosting for Credit Scoring

Author:

Zou YaoORCID,Gao Changchun

Abstract

Credit scoring is an effective tool for banks and lending companies to manage the potential credit risk of borrowers. Machine learning algorithms have made grand progress in automatic and accurate discrimination of good and bad borrowers. Notably, ensemble approaches are a group of powerful tools to enhance the performance of credit scoring. Random forest (RF) and Gradient Boosting Decision Tree (GBDT) have become the mainstream ensemble methods for precise credit scoring. RF is a Bagging-based ensemble that realizes accurate credit scoring enriches the diversity base learners by modifying the training object. However, the optimization pattern that works on invariant training targets may increase the statistical independence of base learners. GBDT is a boosting-based ensemble approach that reduces the credit scoring error by iteratively changing the training target while keeping the training features unchanged. This may harm the diversity of base learners. In this study, we incorporate the advantages of the Bagging ensemble training strategy and boosting ensemble optimization pattern to enhance the diversity of base learners. An extreme learning machine-based supervised augmented GBDT is proposed to enhance the discriminative ability for credit scoring. Experimental results on 4 public credit datasets show a significant improvement in credit scoring and suggest that the proposed method is a good solution to realize accurate credit scoring.

Funder

National Natural Science Foundation of China

Major project of Shanghai Municipal Education Commission’s Scientific Research and 463 Innovation program

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3