Live-Cell Systems in Real-Time Biomonitoring of Water Pollution: Practical Considerations and Future Perspectives

Author:

Wlodkowic DonaldORCID,Karpiński Tomasz M.ORCID

Abstract

Continuous monitoring and early warning of potential water contamination with toxic chemicals is of paramount importance for human health and sustainable food production. During the last few decades there have been noteworthy advances in technologies for the automated sensing of physicochemical parameters of water. These do not translate well into online monitoring of chemical pollutants since most of them are either incapable of real-time detection or unable to detect impacts on biological organisms. As a result, biological early warning systems have been proposed to supplement conventional water quality test strategies. Such systems can continuously evaluate physiological parameters of suitable aquatic species and alert the user to the presence of toxicants. In this regard, single cellular organisms, such as bacteria, cyanobacteria, micro-algae and vertebrate cell lines, offer promising avenues for development of water biosensors. Historically, only a handful of systems utilising single-cell organisms have been deployed as established online water biomonitoring tools. Recent advances in recombinant microorganisms, cell immobilisation techniques, live-cell microarrays and microfluidic Lab-on-a-Chip technologies open new avenues to develop miniaturised systems capable of detecting a broad range of water contaminants. In experimental settings, they have been shown as sensitive and rapid biosensors with capabilities to detect traces of contaminants. In this work, we critically review the recent advances and practical prospects of biological early warning systems based on live-cell biosensors. We demonstrate historical deployment successes, technological innovations, as well as current challenges for the broader deployment of live-cell biosensors in the monitoring of water quality.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3