Investigating Machine Learning Applications for Effective Real-Time Water Quality Parameter Monitoring in Full-Scale Wastewater Treatment Plants

Author:

Safder UsmanORCID,Kim Jongrack,Pak Gijung,Rhee GaheeORCID,You Kwangtae

Abstract

Environmental sensors are utilized to collect real-time data that can be viewed and interpreted using a visual format supported by a server. Machine learning (ML) methods, on the other hand, are excellent in statistically evaluating complicated nonlinear systems to assist in modeling and prediction. Moreover, it is important to implement precise online monitoring of complex nonlinear wastewater treatment plants to increase stability. Thus, in this study, a novel modeling approach based on ML methods is suggested that can predict the effluent concentration of total nitrogen (TNeff) a few hours ahead. The method consists of different ML algorithms in the training stage, and the best selected models are concatenated in the prediction stage. Recursive feature elimination is utilized to reduce overfitting and the curse of dimensionality by finding and eliminating irrelevant features and identifying the optimal subset of features. Performance indicators suggested that the multi-attention-based recurrent neural network and partial least squares had the highest accurate prediction performance, representing a 41% improvement over other ML methods. Then, the proposed method was assessed to predict the effluent concentration with multistep prediction horizons. It predicted 1-h ahead TNeff with a 98.1% accuracy rate, whereas 3-h ahead effluent TN was predicted with a 96.3% accuracy rate.

Funder

Ministry of Environment

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3