Dynamic Real-Time Prediction of Reclaimed Water Volumes Using the Improved Transformer Model and Decomposition Integration Technology

Author:

Sun Xiangyu1,Zhang Lina2,Wang Chao3,Yang Yiyang4,Wang Hao13

Affiliation:

1. Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China

2. School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China

3. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China

4. College of the Environment and Ecology, Xiamen University, Xiamen 361104, China

Abstract

In recent years, wastewater reuse has become crucial for addressing global freshwater scarcity and promoting sustainable water resource development. Accurate inflow volume predictions are essential for enhancing operational efficiency in water treatment facilities and effective wastewater utilization. Traditional and decomposition integration models often struggle with non-stationary time series, particularly in peak and anomaly sensitivity. To address this challenge, a differential decomposition integration model based on real-time rolling forecasts has been developed. This model uses an initial prediction with a machine learning (ML) model, followed by differential decomposition using Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN). A Time-Aware Outlier-Sensitive Transformer (TS-Transformer) is then applied for integrated predictions. The ML-CEEMDAN-TSTF model demonstrated superior accuracy compared to basic ML models, decomposition integration models, and other Transformer-based models. This hybrid model explicitly incorporates time-scale differentiated information as a feature, improving the model’s adaptability to complex environmental data and predictive performance. The TS-Transformer was designed to make the model more sensitive to anomalies and peaks in time series, addressing issues such as anomalous data, uncertainty in water volume data, and suboptimal forecasting accuracy. The results indicated that: (1) the introduction of time-scale differentiated information significantly enhanced model accuracy; (2) ML-CEEMDAN-TSTF demonstrated higher accuracy compared to ML-CEEMDAN-Transformer; (3) the TS-Transformer-based decomposition integration model consistently outperformed those based on LSTM and eXtreme Gradient Boosting (XGBoost). Consequently, this research provides a precise and robust method for predicting reclaimed water volumes, which holds significant implications for research on clean water and water environment management.

Funder

National Key R&D Program of China

Major Science and Technology Projects of the Ministry of Water Resources of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3