Swin-HSTPS: Research on Target Detection Algorithms for Multi-Source High-Resolution Remote Sensing Images

Author:

Fang KunORCID,Ouyang Jianquan,Hu Buwei

Abstract

Traffic port stations are composed of buildings, infrastructure, and transportation vehicles. The target detection of traffic port stations in high-resolution remote sensing images needs to collect feature information of nearby small targets, comprehensively analyze and classify, and finally complete the traffic port station positioning. At present, deep learning methods based on convolutional neural networks have made great progress in single-target detection of high-resolution remote sensing images. How to show good adaptability to the recognition of multi-target complexes of high-resolution remote sensing images is a difficult point in the current remote sensing field. This paper constructs a novel high-resolution remote sensing image traffic port station detection model (Swin-HSTPS) to achieve high-resolution remote sensing image traffic port station detection (such as airports, ports) and improve the multi-target complex in high-resolution remote sensing images The recognition accuracy of high-resolution remote sensing images solves the problem of high-precision positioning by comprehensive analysis of the feature combination information of multiple small targets in high-resolution remote sensing images. The model combines the characteristics of the MixUp hybrid enhancement algorithm, and enhances the image feature information in the preprocessing stage. The PReLU activation function is added to the forward network of the Swin Transformer model network to construct a ResNet-like residual network and perform convolutional feature maps. Non-linear transformation strengthens the information interaction of each pixel block. This experiment evaluates the superiority of the model training by comparing the two indicators of average precision and average recall in the training phase. At the same time, in the prediction stage, the accuracy of the prediction target is measured by confidence. Experimental results show that the optimal average precision of the Swin-HSTPS reaches 85.3%, which is about 8% higher than the average precision of the Swin Transformer detection model. At the same time, the target prediction accuracy is also higher than the Swin Transformer detection model, which can accurately locate traffic port stations such as airports and ports in high-resolution remote sensing images. This model inherits the advantages of the Swin Transformer detection model, and is superior to mainstream models such as R-CNN and YOLOv5 in terms of the target prediction ability of high-resolution remote sensing image traffic port stations.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference33 articles.

1. Research on Port Target in Remote Sensing Images Based on Knowledge,2015

2. Aircraft target detection in remote sensing image based on improved YOLOv3 algorithm;Yuan;J. Geomat. Sci. Technol.,2019

3. Urban Area Detection in Very High Resolution Remote Sensing Images Using Deep Convolutional Neural Networks

4. Airport Extraction via Complementary Saliency Analysis and Saliency-Oriented Active Contour Model

5. ImageNet classification with deep convolutional neural networks

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3