Introduction of the Advanced Meteorological Imager of Geo-Kompsat-2a: In-Orbit Tests and Performance Validation

Author:

Kim Dohyeong,Gu Minju,Oh Tae-Hyeong,Kim Eun-KyuORCID,Yang Hye-Ji

Abstract

Geo-Kompsat-2A (Geostationary-Korean Multi-Purpose SATtellite-2A, GK2A), a new generation of Korean geostationary meteorological satellite, carry state-of-the-art optical sensors with significantly higher radiometric, spectral, and spatial resolution than the Communication, Ocean, and Meteorological Satellite (COMS) previously available in the geostationary orbit. The new Advanced Meteorological Imager (AMI) on GK2A has 16 observation channels, and its spatial resolution is 0.5 or 1 km for visible channels and 2 km for near-infrared and infrared channels. These advantages, when combined with shortened revisit times (around 10 min for full disk and 2 min for sectored regions), provide new levels of capacity for the identification and tracking of rapidly changing weather phenomena and for the derivation of quantitative products. These improvements will bring about unprecedented levels of performance in nowcasting services and short-range weather forecasting systems. Imagery from the satellites is distributed and disseminated to users via multiple paths, including internet services and satellite broadcasting services. In post-launch performance validation, infrared channel calibration is accurate to within 0.2 K with no significant diurnal variation using an approach developed under the Global Space-based Inter-Calibration System framework. Visible and near infrared channels showed unexpected seasonal variations of approximately 5 to 10% using the ray matching method and lunar calibration. Image navigation was accurate to within requirements, 42 µrad (1.5 km), and channel-to-channel registration was also validated. This paper describes the features of the GK2A AMI, GK2A ground segment, and data distribution. Early performance results of AMI during the commissioning period are presented to demonstrate the capabilities and applications of the sensor.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3