The Uncertainty of SNO Cross-Calibration for Satellite Infrared Channels

Author:

Gu Zhong1234,Chen Lin34ORCID,Dai Huixing5,Tian Lin34ORCID,Hu Xiuqing34,Zhang Peng34ORCID

Affiliation:

1. Chinese Academy of Meteorological Sciences, Beijing 100081, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites, National Satellite Meteorological Center (National Center for Space Weather), China Meteorological Administration, Beijing 100081, China

4. Innovation Center for FengYun Meteorological Satellite (FYSIC), Beijing 100081, China

5. Key Laboratory of Photoelectronic Imaging Technology and System of Ministry of Education of China, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China

Abstract

The on-orbit radiometric calibration is a fundamental task in quantitative remote sensing applications. A widely used calibration method is the cross-calibration based on Simultaneous Nadir Observation (SNO), which involves using high-precision reference instruments to calibrate lower-precision onboard instruments. However, despite efforts to match the observation time, spatial location, field geometry, and instrument spectra, errors can still be introduced during the matching processes and linear regression analysis. This paper focuses on the error generated by sample matching and the error fitting method generated by the sample fitting method. An error propagation analysis is performed to develop a generic model for assessing the uncertainty of the SNO cross-calibration method itself in meteorological satellite infrared channels. The model is validated using the payload parameters of the Hyperspectral Infrared Atmospheric Sounder (HIRAS) and the Medium Resolution Spectral Imager (MERSI) instruments aboard the FengYun-3D (FY-3D). Simulation experiments are performed considering typical bright temperatures, different background fields, and varying matching threshold conditions. The results demonstrate the effectiveness of the proposed model in capturing the error propagation chain in the SNO cross-calibration process. The model provides valuable insight into error analysis in the SNO cross-calibration method and can assist in determining the optimal sample matching threshold for achieving radiometric calibration accuracy.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3