Variation in Ice Phenology of Large Lakes over the Northern Hemisphere Based on Passive Microwave Remote Sensing Data

Author:

Su LeiORCID,Che TaoORCID,Dai Liyun

Abstract

Ice phenology data of 22 large lakes of the Northern Hemisphere for 40 years (1979–2018) have been retrieved from passive microwave remote sensing brightness temperature (Tb). The results were compared with site-observation data and visual interpretation from Moderate Resolution Imaging Spectroradiometer (MODIS) surface reflectivity products images (MOD09GA). The mean absolute errors of four lake ice phenology parameters, including freeze-up start date (FUS), freeze-up end date (FUE), break-up start date (BUS), and break-up end date (BUE) against MODIS-derived ice phenology were 2.50, 2.33, 1.98, and 3.27 days, respectively. The long-term variation in lake ice phenology indicates that FUS and FUE are delayed; BUS and BUE are earlier; ice duration (ID) and complete ice duration (CID) have a general decreasing trend. The average change rates of FUS, FUE, BUS, BUE, ID, and CID of lakes in this study from 1979 to 2018 were 0.23, 0.23, −0.17, −0.33, −0.67, and −0.48 days/year, respectively. Air temperature and latitude are two dominant driving factors of lake ice phenology. Lake ice phenology for the period 2021–2100 was predicted by the relationship between ice phenology and air temperature for each lake. Compared with lake ice phenology changes from 1990 to 2010, FUS is projected to be delayed by 3.1 days and 11.8 days under Representative Concentration Pathways (RCPs) 2.6 and 8.5 scenarios, respectively; BUS is projected to be earlier by 3.3 days and 10.7 days, respectively; and ice duration from 2080 to 2100 will decrease by 6.5 days and 21.9 days, respectively.

Funder

Strategic Priority Research Program of the Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference86 articles.

1. IPCC, 2014: Climate Change 2014: Synthesis Report;Pachauri,2014

2. The Global Observing System For Climate: Implementation Needs (GCOS-200),2016

3. The response and role of ice cover in lake-climate interactions

4. Recent trends in Canadian lake ice cover

5. Predicting the Date of Lake Ice Breakup

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3