Arctic warming drives striking twenty-first century ecosystem shifts in Great Slave Lake (Subarctic Canada), North America's deepest lake

Author:

Rühland Kathleen M.1ORCID,Evans Marlene2ORCID,Smol John P.1ORCID

Affiliation:

1. Paleoecological Environmental Assessment and Research Lab (PEARL), Department of Biology, Queen's University, 116 Barrie St., Kingston, Ontario, Canada K7L 3N6

2. Environment and Climate Change Canada, 11 Innovation Boulevard, Saskatoon, Saskatchewan, Canada S7N 3H5

Abstract

Great Slave Lake (GSL), one of the world's largest and deepest lakes, has undergone an aquatic ecosystem transformation in response to twenty-first-century accelerated Arctic warming that is unparalleled in at least the past two centuries. Algal remains from four high-resolution palaeolimnological records retrieved from the West Basin provide baseline limnological data that we compared with historical phycological surveys undertaken on GSL between the 1940s and 1990s. We document the rapid restructuring of algal community composition ca 2000 CE that is consistent with recent increases in regional air temperature and declines in ice cover and wind speed, that collectively altered habitats for aquatic biota. This new limnological regime initiated the first observation of scaled chrysophytes and favoured the rapid proliferation of small planktonic cyclotelloid diatoms which replaced the long-established dominance of large filamentous Aulacoseira islandica in West Basin sedimentary records. Such abrupt transformations in the primary producers of this socioecologically valuable ‘northern Great Lake’ may have widespread implications for the entire food web with unknown consequences for aquatic ecosystem functioning and fisheries, which First Nations, Métis and other northern communities depend upon, pointing to the need for new studies.

Funder

ECCC

Arctic Environmental Strategy Program

Natural Sciences and Engineering Research Council of Canada

Northern River Basins Study

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3