Synthesis and Characteristics of Composite Material with a Plant-Based Filler

Author:

Cherkashina Natalia Igorevna1ORCID,Pavlenko Zoya Vladimirovna1,Matveenko Dar’ya Sergeyevna1,Domarev Semen Nikolayevich1,Pushkarskaya Dar’ya Vasil’yevna1,Ryzhikh Dar’ya Aleksandrovna1

Affiliation:

1. Department of Theoretical and Applied Chemistry, Belgorod State Technological University Named after V.G. Shukhov, 308012 Belgorod, Russia

Abstract

The article presents the results of synthesis of polymeric composite material based on epoxy binder and plant-based filler. Pre-dried and powdered wheat straw was used as a plant-based filler. The wheat straw content in the composite varied from 10 to 50 wt.%. Thermal, mechanical, and surface properties of composites depending on the wheat straw content were researched. In addition, the samples were studied for resistance to corrosive environments. The hydrophobic–hydrophilic surface balance of composites was evaluated, and their free surface energy was studied. Introduction of wheat straw in small amounts (up to 30 wt.%) increases bending strength of polymer from 18.65 ± 1.12 MPa to 22.61 ± 0.91 MPa; when the content is more than 40 wt.%, reduction of strength is observed. Even with a wheat straw powder content of 50 wt.%, the bending strength is 11.52 ± 1.03 MPa, which corresponds to the strength of the construction material. The upper limit of working temperature for the epoxy binder is 306 °C, and for the composite with the wheat straw content of 30 wt.%—264 °C. The surface of the pure polymer shows a hydrophilic character. The average value of the water wetting contact angle of the pure epoxy sample is 84.96 ± 9.03°. The introduction of 30 wt.% of wheat straw powder filler transforms the surface into hydrophobic one (average value of water wetting contact angle is 96.69 ± 5.71°). The developed composites can be applied in furniture production including tabletops or panels for floors. Future research will focus on expanding the types of plant-based fillers for polymer composites.

Funder

State Assignment of the Ministry of Education and Science of the Russian Federation

Publisher

MDPI AG

Subject

General Energy,General Engineering,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3