Green Composites Based on Mater-Bi® and Solanum lycopersicum Plant Waste for 3D Printing Applications

Author:

Scaffaro RobertoORCID,Citarrella Maria ClaraORCID,Morreale MarcoORCID

Abstract

3D printability of green composites is currently experiencing a boost in importance and interest, envisaging a way to valorise agricultural waste, in order to obtain affordable fillers for the preparation of biodegradable polymer-based composites with reduced cost and environmental impact, without undermining processability and mechanical performance. In this work, an innovative green composite was prepared by combining a starch-based biodegradable polymer (Mater-Bi®, MB) and a filler obtained from the lignocellulosic waste coming from Solanum lycopersicum (i.e., tomato plant) harvesting. Different processing parameters and different filler amounts were investigated, and the obtained samples were subjected to rheological, morphological, and mechanical characterizations. Regarding the adopted filler amounts, processability was found to be good, with adequate dispersion of the filler in the matrix. Mechanical performance was satisfactory, and it was found that this is significantly affected by specific process parameters such as the raster angle. The mechanical properties were compared to those predictable from the Halpin–Tsai model, finding that the prepared systems exceed the expected values.

Funder

PNRR PE_11 3A-ITALY CUP

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3