Sustainable Basalt Fibers vs. Traditional Glass Fibers: Comparative Study on Thermal Properties and Flow Behavior of Polyamide 66-Based Composites

Author:

Patti AntonellaORCID,Acierno StefanoORCID,Nele Luigi,Graziosi Lucia,Acierno DomenicoORCID

Abstract

In this work, basalt fibers (BF) have been investigated as possible natural and sustainable replacements for the common synthetic mineral filler—glass fibers (GF)—used in polyamide 66 matrix (PA66). Composites have been prepared at two different fiber concentrations (15 and 25 wt.%, respectively) by melt blending. The developed systems have been mainly characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), capillary rheology, and scanning electron microscopy (SEM). The kinetic parameters to thermal degradation through the Coats–Redfern method allowed us to attest a negligible effect of fiber type on thermal stability of the developed systems. Composites incorporating 15 wt.% of fiber content possessed the highest activation energy (≥230 kJ/mol). The introduction of BF and GF in PA 66 polymer, regardless of content, always led to an increase in crystallization and melting temperatures, and to a similar reduction in crystallinity degree and glass transition temperature. The shear viscosity of the basic polymer increased by the addition of fillers, particularly at low shear rate, with a pronounced effect in the case of basal fibers. A slightly higher shear thinning behavior of BF/PA66 with respect to GF/PA66 composites was confirmed by fitting the flow curves through the power law model. Finally, a worsening in fiber dispersion, by increasing the content in the matrix, and a weak compatibility between the two phases constituting the materials were highlighted through SEM micrographs.

Publisher

MDPI AG

Subject

General Energy,General Engineering,General Chemical Engineering

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3