Ultrasound-Assisted Extraction of Polyphenols from Olive Pomace: Scale Up from Laboratory to Pilot Scenario

Author:

Rodríguez ÓscarORCID,Bona Sergio,Stäbler AndreasORCID,Rodríguez-Turienzo Laura

Abstract

Power ultrasound application has been proven to intensify the extraction of biocompounds from plant materials. In this work, the ultrasound-assisted extraction (UAE) of polyphenols from olive pomace (OP) has been studied at three different scales: laboratory (batch, 400 W, 0 barg), medium (continuous, 1000 W, 1.0 barg), and pilot (continuous, 2000 W, 1.0 barg) taking into consideration the influence of technological parameters: extraction time (s), solvent to solid ratio (mL/g), mixture pH, and acoustic parameters: amplitude (µm), intensity (W/cm2), and applied energy (Wh). A central composite design was used to optimize the UAE at laboratory scale (0.2 kg). The optimal conditions were: time: 490 s; ratio: 2.1 mL H2O/g OP; pH: 5.6 at an acoustic amplitude of 46 µm for a maximum extraction yield of 3.6 g GAE/L of extract. At medium scale (2.2 kg) the UAE was carried out using amplitudes from 41 to 57 µm. The effect of the pressure (1.0 barg) on the UAE was positive, in terms of higher extraction yield (2.9 g GAE/L) and faster extraction rates compared to the non-pressurized UAE (2.5 g GAE/L), however, the extraction yield was lower than the one observed at laboratory scale. At pilot scale (120 kg), the UAE involved different ultrasound constellations (booster + sonotrode) to deliver the ultrasound energy at different acoustic intensities from 23 to 57 W/cm2. The acoustic intensity (W/cm2) exerts an important effect on the extraction yield, and should be tailored to each process scale. The highest yield obtained at pilot-scale was 3.0 g GAE/L, and it was 58% higher than the one observed in the conventional extraction without ultrasound assistance (stirring and heating). In all tests, regardless of the scale, higher yields were observed between 80 and 85 °C. The application of this technology at the industrial scale to evaluate if the improvement of the extraction caused by the application of ultrasound could is still important when other operations like centrifugation, ultrafiltration, and reverse osmosis are included in the system and to evaluate its techno-economic feasibility.

Funder

Bio Based Industries Joint Undertaking

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3