Waste Feathers Processing to Liquid Fertilizers for Sustainable Agriculture—LCA, Economic Evaluation, and Case Study

Author:

Vavrova Kamila,Wimmerova LenkaORCID,Knapek JaroslavORCID,Weger Jan,Keken ZdenekORCID,Kastanek FrantisekORCID,Solcova Olga

Abstract

The poultry meat industry generates about 60 million tons of waste annually. However, such waste can serve as a cheap material source for sustainable liquid fertilizers or biostimulant production. Moreover, its practical potential associated with the circular economy is evident. One of the options for waste feather reprocessing is to use a hydrolysis process, whose operating parameters vary depending on the waste material used. The better the quality of the waste feathers, the less energy is needed; moreover, a higher yield of amino acids and peptides can be achieved. These are the main operational parameters that influence the overall environmental and economic performance of the hydrolysis process. The assessment of process operational environmental aspects confirmed that the environmental impacts of hydrolysate production are highly dependent on the amount of electricity required and its sources. This fact influences the midpoint and the endpoint impacts on the observed environmental impact categories. It also minimizes the pressure associated with fossil resource scarcity and the related impact on climate change. During an economic evaluation of the process, it was found that the option of processing more fine waste, such as CGF, provided a 5% saving in energy costs related to the reduction in the cost per liter of hydrolysate of 4.5%. Finally, a case study experiment confirmed the fertilizing effect of the hydrolysate on pepper plants (biometric parameters, yield). Thus, the hydrolysate produced from the waste feathers can serve as a substitute for nitrate fertilizing, which is commonly drawn from raw fossil materials.

Funder

Technology Agency of the Czech Republic under the National Competence Centre BIOCIRTECH

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference43 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3