A Hardware-Friendly Low-Bit Power-of-Two Quantization Method for CNNs and Its FPGA Implementation

Author:

Sui Xuefu,Lv Qunbo,Bai Yang,Zhu Baoyu,Zhi LiangjieORCID,Yang Yuanbo,Tan Zheng

Abstract

To address the problems of convolutional neural networks (CNNs) consuming more hardware resources (such as DSPs and RAMs on FPGAs) and their accuracy, efficiency, and resources being difficult to balance, meaning they cannot meet the requirements of industrial applications, we proposed an innovative low-bit power-of-two quantization method: the global sign-based network quantization (GSNQ). This method involves designing different quantization ranges according to the sign of the weights, which can provide a larger quantization-value range. Combined with the fine-grained and multi-scale global retraining method proposed in this paper, the accuracy loss of low-bit quantization can be effectively reduced. We also proposed a novel convolutional algorithm using shift operations to replace multiplication to help to deploy the GSNQ quantized models on FPGAs. Quantization comparison experiments performed on LeNet-5, AlexNet, VGG-Net, ResNet, and GoogLeNet showed that GSNQ has higher accuracy than most existing methods and achieves “lossless” quantization (i.e., the accuracy of the quantized CNN model is higher than the baseline) at low-bit quantization in most cases. FPGA comparison experiments showed that our convolutional algorithm does not occupy on-chip DSPs, and it also has a low comprehensive occupancy in terms of on-chip LUTs and FFs, which can effectively improve the computational parallelism, and this proves that GSNQ has good hardware-adaptation capability. This study provides theoretical and experimental support for the industrial application of CNNs.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference58 articles.

1. Very Deep Convolutional Networks for Large-Scale Image Recognition;Simonyan;arXiv,2014

2. ImageNet classification with deep convolutional neural networks

3. Deep Residual Learning for Image Recognition;He;Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2016

4. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation;Girshick;arXiv,2013

5. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3