Author:
Guo Lei,Zhong Shengping,Bao Qipeng,Gao Jintao,Guo Zhancheng
Abstract
A high-temperature confocal scanning laser microscope and an online reduction–water quenching experiment system were used to systematically study the generation of iron whiskers during the reduction of hematite ore particles with CO/CO2 gas. The "blooming" phenomenon of the surface during the reduction of iron ore particles was found in this experiment. The orientation of the grain on the longitudinal section of an iron whisker was measured to be uniform by applying the electron back-scattered diffraction technique, which proved that the iron whiskers are most likely to exist in single crystal form. According to the in-situ online experimental video, the average diffusion flux of iron atoms when the layered iron completely covers the surface of the ore particle is about 0.0072 mol/(m2·s). While the iron atom diffusion flux at the root of the iron whisker during the pre-growth process is much larger than the flux when the layered iron is produced, which are defined to be 0.081 mol/(m2·s), 0.045 mol/(m2·s), 0.013 mol/(m2· s), and 0.0046 mol/(m2·s), respectively during the four stages of the growth of an iron whisker. The quantitative relationship between the chemical driving force and the whisker growth is established as Δ G θ + R T ln p CO 2 p CO + 2 n 0.056 r ρ E s T = 0 .
Funder
National Natural Science Foundation of China
Key Technologies Research and Development Program
Subject
General Materials Science,Metals and Alloys
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献