Green Ironmaking at Higher H2 Pressure: Reduction Kinetics and Microstructure Formation During Hydrogen-Based Direct Reduction of Hematite Pellets

Author:

Özgün Özge,Dirba Imants,Gutfleisch Oliver,Ma YanORCID,Raabe Dierk

Abstract

AbstractHydrogen-based direct reduction (HyDR) of iron ores has attracted immense attention and is considered a forerunner technology for sustainable ironmaking. It has a high potential to mitigate CO2 emissions in the steel industry, which accounts today for ~ 8–10% of all global CO2 emissions. Direct reduction produces highly porous sponge iron via natural-gas-based or gasified-coal-based reducing agents that contain hydrogen and organic molecules. Commercial technologies usually operate at elevated pressure, e.g., the MIDREX process at 2 bar and the HyL/Energiron process at 6–8 bar. However, the impact of H2 pressure on reduction kinetics and microstructure evolution of hematite pellets during hydrogen-based direct reduction has not been well understood. Here, we present a study about the influence of H2 pressure on the reduction kinetics of hematite pellets with pure H2 at 700 °C at various pressures, i.e., 1, 10, and 100 bar under static gas exposure, and 1.3 and 50 bar under dynamic gas exposure. The microstructure of the reduced pellets was characterized by combining X-ray diffraction and scanning electron microscopy equipped with electron backscatter diffraction. The results provide new insights into the critical role of H2 pressure in the hydrogen-based direct reduction process and establish a direction for future furnace design and process optimization. Graphical Abstract

Funder

Deutsche Forschungsgemeinschaft

European Research Council

Max-Planck-Institut für Eisenforschung GmbH

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3