Decreased Metabolic Flexibility in Skeletal Muscle of Rat Fed with a High-Fat Diet Is Recovered by Individual CLA Isomer Supplementation via Converging Protective Mechanisms

Author:

Trinchese GiovannaORCID,Cavaliere Gina,Cimmino Fabiano,Catapano Angela,Carta GianfrancaORCID,Pirozzi ClaudioORCID,Murru Elisabetta,Lama Adriano,Meli Rosaria,Bergamo PaoloORCID,Banni Sebastiano,Mollica Maria Pina

Abstract

Energy balance, mitochondrial dysfunction, obesity, and insulin resistance are disrupted by metabolic inflexibility while therapeutic interventions are associated with improved glucose/lipid metabolism in skeletal muscle. Conjugated linoleic acid mixture (CLA) exhibited anti-obesity and anti-diabetic effects; however, the modulatory ability of its isomers (cis9, trans11, C9; trans10, cis12, C10) on the metabolic flexibility in skeletal muscle remains to be demonstrated. Metabolic inflexibility was induced in rat by four weeks of feeding with a high-fat diet (HFD). At the end of this period, the beneficial effects of C9 or C10 on body lipid content, energy expenditure, pro-inflammatory cytokines, glucose metabolism, and mitochondrial efficiency were examined. Moreover, oxidative stress markers, fatty acids, palmitoyletanolamide (PEA), and oleyletanolamide (OEA) contents along with peroxisome proliferator-activated receptors-alpha (PPARα), AKT, and adenosine monophosphate-activated protein kinase (AMPK) expression were evaluated in skeletal muscle to investigate the underlying biochemical mechanisms. The presented results indicate that C9 intake reduced mitochondrial efficiency and oxidative stress and increased PEA and OEA levels more efficiently than C10 while the anti-inflammatory activity of C10, and its regulatory efficacy on glucose homeostasis are associated with modulation of the PPARα/AMPK/pAKT signaling pathway. Our results support the idea that the dissimilar efficacy of C9 and C10 against the HFD-induced metabolic inflexibility may be consequential to their ability to activate different molecular pathways.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3