RF-Based UAV Detection and Identification Using Hierarchical Learning Approach

Author:

Nemer IbrahimORCID,Sheltami TarekORCID,Ahmad IrfanORCID,Yasar Ansar Ul-Haque,Abdeen Mohammad A. R.ORCID

Abstract

Unmanned Aerial Vehicles (UAVs) are widely available in the current market to be used either for recreation as a hobby or to serve specific industrial requirements, such as agriculture and construction. However, illegitimate and criminal usage of UAVs is also on the rise which introduces their effective identification and detection as a research challenge. This paper proposes a novel machine learning-based for efficient identification and detection of UAVs. Specifically, an improved UAV identification and detection approach is presented using an ensemble learning based on the hierarchical concept, along with pre-processing and feature extraction stages for the Radio Frequency (RF) data. Filtering is applied on the RF signals in the detection approach to improve the output. This approach consists of four classifiers and they are working in a hierarchical way. The sample will pass the first classifier to check the availability of the UAV, and then it will specify the type of the detected UAV using the second classifier. The last two classifiers will handle the sample that is related to Bebop and AR to specify their mode. Evaluation of the proposed approach with publicly available dataset demonstrates better efficiency compared to existing detection systems in the literature. It has the ability to investigate whether a UAV is flying within the area or not, and it can directly identify the type of UAV and then the flight mode of the detected UAV with accuracy around 99%.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimized Radio Frequency Footprint Identification Based on UAV Telemetry Radios;Sensors;2024-08-06

2. UAV Detection Based on the Variance of Higher-Order Cumulants;IEEE Transactions on Vehicular Technology;2024-08

3. Digital twin of multi-model drone detection system on Airsim for RF and vision modalities;Turkish Journal of Engineering;2024-07-28

4. Unveiling intrusions: explainable SVM approaches for addressing encrypted Wi-Fi traffic in UAV networks;Knowledge and Information Systems;2024-07-15

5. Design of UAV signal classification system based on neural network encoder;International Conference on Image, Signal Processing, and Pattern Recognition (ISPP 2024);2024-06-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3