Optimized Radio Frequency Footprint Identification Based on UAV Telemetry Radios

Author:

Tian Yuan12ORCID,Wen Hong1ORCID,Zhou Jiaxin2,Duan Zhiqiang2,Li Tao2

Affiliation:

1. College of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu 611731, China

2. School of Unmanned Aerial Vehicle Industry, Chengdu Aeronautic Polytechnic, Chengdu 610100, China

Abstract

With the widespread use of unmanned aerial vehicles (UAVs), the detection and identification of UAVs is a vital security issue for the safety of airspace and ground facilities in the no-fly zone. Telemetry radios are important wireless communication devices for UAVs, especially in UAVs beyond the visual line of sight (BVLOS) operating mode. This work focuses on the UAV identification approach using transient signals from UAV telemetry radios instead of the signals from UAV controllers that the former research work depended on. In our novel UAV Radio Frequency (RF) identification system framework based on telemetry radio signals, the EC−α algorithm is optimized to detect the starting point of the UAV transient signal and the detection accuracy at different signal-to-noise ratios (SNR) is evaluated. In the training stage, the Convolutional Neural Network (CNN) model is trained to extract features from raw I/Q data of the transient signals with different waveforms. Its architecture and hyperparameters are analyzed and optimized. In the identification stage, the extracted transient signals are clustered through the Self-Organizing Map (SOM) algorithm and the Clustering Signals Joint Identification (CSJI) algorithm is proposed to improve the accuracy of RF fingerprint identification. To evaluate the performance of our proposed approach, we design a testbed, including two UAVs as the flight platform, a Universal Software Radio Peripheral (USRP) as the receiver, and 20 telemetry radios with the same model as targets for identification. Indoor test results show that the optimized identification approach achieves an average accuracy of 92.3% at 30 dB. In comparison, the identification accuracy of SVM and KNN is 69.7% and 74.5%, respectively, at the same SNR condition. Extensive experiments are conducted outdoors to demonstrate the feasibility of this approach.

Funder

Natural Science Foundation of Sichuan Province

China Postdoctoral Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3