Abstract
Energy demand forecasting is practiced in several time frames; different explanatory variables are used in each case to serve different decision support mandates. For example, in the short, daily, term building level, forecasting may serve as a performance baseline. On the other end, we have long-term, policy-oriented forecasting exercises. TIMES (an acronym for The Integrated Markal Efom System) allows us to model supply and anticipated technology shifts over a long-term horizon, often extending as far away in time as 2100. Between these two time frames, we also have a mid-term forecasting time frame, that of a few years ahead. Investigations here are aimed at policy support, although in a more mid-term horizon, we address issues such as investment planning and pricing. In this paper, we develop and evaluate statistical and neural network approaches for this mid-term forecasting of final energy and electricity for the residential sector in six EU countries (Germany, the Netherlands, Sweden, Spain, Portugal and Greece). Various possible approaches to model the explanatory variables used are presented, discussed, and assessed as to their suitability. Our end goal extends beyond model accuracy; we also include interpretability and counterfactual concepts and analysis, aiming at the development of a modelling approach that can provide decision support for strategies aimed at influencing energy demand.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献