Combustion of Fuel Surrogates: An Application to Gas Turbine Engines

Author:

Al Qubeissi MansourORCID,Al-Esawi NawarORCID,Soyhan Hakan SerhadORCID

Abstract

The previously developed approaches for fuel droplet heating and evaporation processes, mainly using the Discrete Multi Component Model (DMCM), are investigated for the aerodynamic combustion simulation. The models have been recently improved and generalised for a broad range of bio-fossil fuel blends so that the application areas are broadened with an increased accuracy. The main distinctive features of these models are that they consider the impacts of species’ thermal conductivities and diffusivities within the droplets in order to account for the temperature gradient, transient diffusion of species and recirculation. A formulation of fuel surrogates is made using the recently introduced model, referred to as “Complex Fuel Surrogate Model (CFSM)”, and analysing their heating, evaporation and combustion characteristics. The CFSM is aimed to reduce the full composition of fuel to a much smaller number of components based on their mass fractions, and to formulate fuel surrogates. Such an approach has provided a proof of concept with the implementation of the developed model into a commercial CFD code ANSYS Fluent. A case study is made for the CFD modelling of a gas turbine engine using a kerosene fuel surrogate, which is the first of its kind. The surrogate is proposed using the CFSM, with the aim to reduce the computational time and improve the simulation accuracy of the CFD model.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3