Analytical Modeling and Control of Dual Active Bridge Converter Considering All Phase-Shifts

Author:

Fiaz Muhammad Faisal,Calligaro SandroORCID,Iurich Mattia,Petrella Roberto

Abstract

In the field of power electronics-based electrical power conversion, the Dual Active Bridge (DAB) topology has become very popular in recent years due to its characteristics (e.g., bidirectional operation and galvanic isolation), which are particularly suitable to applications such as interface to renewable energy sources, battery storage systems and in smart grids. Although this converter type has been extensively investigated, its analysis and control still pose many challenges, due to the multiple control variables that affect the complex behavior of the converter. This paper presents a theoretical model of the single-phase DAB converter. The proposed model is very general, i.e., it can consider any modulation technique and operating condition. In particular, the converter is seen as composed by four legs, each capable of generating voltage on the inductor, and by the two output legs, which can steer the resulting inductor current to the load. Three variables are considered as the control inputs, i.e., the phase-shifts with respect to one leg. This approach results in a very simple yet accurate closed-form algorithm for obtaining the inductor current waveform. Moreover, a novel analytical model is proposed for calculating the average output current, based on the phase-shift values, independently of the output voltage. It is also shown that average output current can be varied cycle-by-cycle, with no further dynamics. In fact, average output current is not affected by the initial value of inductor current or by DC offset (which may arise during transients). The proposed models can be exploited at several stages of development of a DAB: during the design stage, for fast iteration, when selecting its operating points and when designing the control. In fact, based on the analytical results, a novel control loop is proposed, which adopts a “fictitious” (i.e., open-loop) inner current regulation loop, which can be applied to any modulation scheme (e.g., Single Phase-Shift, Triple Phase-Shift, etc.). The main advantage of this control scheme is that the simple dynamics of the output voltage versus the average output current can be decoupled from the complicated relationship between the phase-shifts and the output current. Moreover, a Finite Control Set (FCS) method is proposed, which selects the optimal operating points for each operating condition and control request, ensuring full Zero-Voltage Switching (ZVS) in all cases. The analytical results obtained and control methods proposed are verified through simulations and extensive experimental tests.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference47 articles.

1. Different purpose design strategies and techniques to improve the performance of a Dual Active Bridge with phase-shift control;Rodriguez;IEEE,2014

2. An overall study of a Dual Active Bridge for bidirectional DC/DC conversion

3. General Analysis of Switching Modes in a Dual Active Bridge with Triple Phase Shift Modulation

4. Modeling and Optimization of Bidirectional Dual Active Bridge AC–DC Converter Topologies;Everts,2014

5. Integration of electric vehicles in smart grid: A review on vehicle to grid technologies and optimization techniques

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3