A Backflow Power Suppression Strategy for Dual Active Bridge Converter Based on Improved Lagrange Method

Author:

Zhang Xinwen1,Wang Canlong1

Affiliation:

1. School of Electrical Information Engineering, North Minzu University, Yinchuan 750021, China

Abstract

Dual-active bridge (DAB) converters are receiving increasing attention from researchers as a critical part of the power transmission of energy routers. However, the DAB converter generates a large backflow power in conventional control mode, and when the load is mutated, its output voltage takes longer to return to the reference value accompanied by large fluctuations. To solve the above problems, a hybrid strategy is proposed in this paper to optimize the converter. The mathematical models of the transmitted power and the backflow power were firstly derived through in-depth analysis of the DAB converter under extended-phase-shift (EPS) modulation, and the suppression of the backflow power was performed according to the improved Lagrange method utilized in the obtained results. Moreover, considering the poor dynamic characteristics of DAB converters under PI control, according to the state space average model of output voltage in the paper, a model prediction control equation is established to improve the dynamic response of the converter by predicting the output voltage value at the next moment. The simulation results verify the effectiveness of the optimization strategy presented in the text.

Funder

Ningxia Natural Science Foundation

National Nature Science Foundation of China

Postgraduate Innovation Project of North Minzu University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3