Abstract
Recently, non-rare-earth motors are attracting more and more attention due to the booming of the electric vehicle (EV) market and, more importantly, the increasing price of the rare-earth magnet material. This paper focuses on the performance comparison among a commercial interior permanent magnet (IPM) motor and two non-rare-earth motors, including a synchronous reluctance motor (SynRM) and a permanent-magnet-assisted synchronous reluctance motor (PMaSynRM). The design procedure to develop a high-torque-density, low-torque-ripple and high-efficiency SynRM is presented. Combined with a developed automatic modeling and simulation procedure, the finite element analysis (FEA)-based differential evolution (DE) algorithm is introduced for the SynRM rotor optimization. In order to fully inspire the potential of the SynRM, a novel method to optimize the motor split ratio is proposed under the constraint of the copper loss. In addition, different slot–pole combinations are investigated to maximize the motor torque, and the rotor structure is also dealt with towards the centrifugal stress at the maximum operating speed. Finally, the motor performance comparison is carried out, and the results show that although the SynRM achieves almost 61% cost savings, its poor torque capability, power factor and flux weakening (FW) capability are non-negligible defects. On the contrary, the PMaSynRM exhibits excellent features for the EV applications in terms of cost, torque density, efficiency and FW capability. This paper presents a novel split ratio optimization method for the optimal SynRM/PMaSynRM design and demonstrates the characteristics of the IPM motors, SynRMs and PMaSynRMs for EV applications.
Funder
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献