Precipitation Retrieval over the Tibetan Plateau from the Geostationary Orbit—Part 1: Precipitation Area Delineation with Elektro-L2 and Insat-3D

Author:

Kolbe ChristineORCID,Thies BorisORCID,Egli SebastianORCID,Lehnert LukasORCID,Schulz Hans,Bendix JörgORCID

Abstract

The lack of long term and well distributed precipitation observations on the Tibetan Plateau (TiP) with its complex terrain raises the need for other sources of precipitation data for this area. Satellite-based precipitation retrievals can fill those data gaps. Before precipitation rates can be retrieved from satellite imagery, the precipitating area needs to be classified properly. Here, we present a feasibility study of a precipitation area delineation scheme for the TiP based on multispectral data with data fusion from the geostationary orbit (GEO, Insat-3D and Elektro-L2) and a machine learning approach (Random Forest, RF). The GEO data are used as predictors for the RF model, extensively validated by independent GPM (Global Precipitation Measurement Mission) IMERG (Integrated Multi-satellitE Retrievals for GPM) gauge calibrated microwave (MW) best-quality precipitation estimates. To improve the RF model performance, we tested different optimization schemes. Here, we find that (1) using more precipitating pixels and reducing the amount of non-precipitating pixels during training greatly improved the classification results. The accuracy of the precipitation area delineation also benefits from (2) changing the temporal resolution into smaller segments. We particularly compared our results to the Infrared (IR) only precipitation product from GPM IMERG and found a markedly improved performance of the new multispectral product (Heidke Skill Score (HSS) of 0.19 (IR only) compared to 0.57 (new multispectral product)). Other studies with a precipitation area delineation obtained a probability of detection (POD) of 0.61, whereas our POD is comparable, with 0.56 on average. The new multispectral product performs best (worse) for precipitation rates above the 90th percentile (below the 10th percentile). Our results point to a clear strategy to improve the IMERG product in the absence of MW radiances.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3