Integrating Active and Passive Remote Sensing Data for Mapping Soil Salinity Using Machine Learning and Feature Selection Approaches in Arid Regions

Author:

Mohamed Sayed A.1ORCID,Metwaly Mohamed M.1ORCID,Metwalli Mohamed R.1,AbdelRahman Mohamed A. E.2ORCID,Badreldin Nasem3ORCID

Affiliation:

1. Data Reception, Analysis, and Receiving Station Affairs Division, National Authority for Remote Sensing and Space Sciences, Cairo 11769, Egypt

2. Land Use Department, Division of Environmental Studies and Land Use, National Authority for Remote Sensing and Space Sciences (NARSS), Cairo 11769, Egypt

3. Department of Soil Science, Faculty of Agricultural and Food Science, University of Manitoba, 13 Freedman Crescent, Winnipeg, MB R3T 2N2, Canada

Abstract

The prevention of soil salinization and managing agricultural irrigation depend greatly on accurately estimating soil salinity. Although the long-standing laboratory method of measuring salinity composition is accurate for determining soil salinity parameters, its use is frequently constrained by the high expense and difficulty of long-term in situ measurement. Soil salinity in the northern Nile Delta of Egypt severely affects agriculture sustainability and food security in Egypt. Understanding the spatial distribution of soil salinity is a critical factor for agricultural development and management in drylands. This research aims to improve soil salinity prediction by using a combined data collection method consisting of Sentinel-1 C radar data and Sentinel-2 optical data acquired simultaneously via integrated radar and optical sensor variables. The modelling approach focuses on feature selection strategies and regression learning. Feature selection approaches that include the filter, wrapper, and embedded methods were used with 47 selected variables depending on a genetic algorithm to scrutinize whether regions of the spectrum from optical indices and SAR texture choose the optimum combinations of selected variables. The sub-setting variables resulting from each feature selection method were used to train the regression learners’ random forest (RF), linear regression (LR), backpropagation neural network (BPNN), and support vector regression (SVR). Combining the BPNN feature selection method with the RF regression learner better predicted soil salinity (RME 0.000246; sub-setting variables = 18). Integrating different remote sensing data and machine learning provides an opportunity to develop a robust prediction approach to predict soil salinity in drylands. This research evaluated the performances of various machine learning models, overcame the limitations of conventional techniques, and optimized the variable input combinations. This research can assist farmers in soil-salinization-affected areas in better managing planting procedures and enhancing the sustainability of their lands.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3