Detecting and Mapping Salt-Affected Soil with Arid Integrated Indices in Feature Space Using Multi-Temporal Landsat Imagery

Author:

AbdelRahman Mohamed A. E.ORCID,Afifi Ahmed A.ORCID,D’Antonio PaolaORCID,Gabr Safwat S.ORCID,Scopa AntonioORCID

Abstract

Salinity systems are well known as extreme environmental systems that occur either naturally or by certain human activities, in arid and semiarid regions, which may harm crop production. Soil salinity identification is essential for soil management and reclamation projects. Information derived from space data acquisition systems (e.g., Landsat, ASTER) is considered as one of the most rapid techniques in mapping Salt-Affected Soil (SAfSoil). The current study tested the previously proposed salinity indices on the northern Nile Delta region, Egypt. The results indicated that most of the indices were not suitable to detect the SAfSoil in the area, due to the interaction between the bare soils, salts, and urbanization. To resolve this issue, the current work suggested a new index for detecting and monitoring the SAfSoil in the Nile Delta region. The newly proposed index takes into consideration plant health, the salt crust at the surface of the soils, as well as urbanization. It facilitates the mapping processes of SAfSoil in the area compared to any other previously proposed index. In this respect, multi-temporal Landsat-7 and 8 satellite data, acquired in 2002, 2016, and 2021, were used. The new index was prepared using the 2002 data and verified using the 2016 and 2021 data. Field measurements and data collected during 2002, 2016, and 2021 were utilized as ground truth data to assess the accuracy of the results obtained from the proposed index. The evaluation of the results indicated that the accuracy assessment for 2002, 2016, and 2021 images was 94.58, 96.08, and 95.68%, respectively. Finally, the effectiveness of using remote sensing in detecting and mapping SAfSoil is outlined.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3