Modeling Migratory Flight in the Spruce Budworm: Temperature Constraints

Author:

Régnière JacquesORCID,Delisle JohanneORCID,Sturtevant Brian R.ORCID,Garcia MatthewORCID,Saint-Amant RémiORCID

Abstract

We describe an individual-based model of spruce budworm moth migration founded on the premise that flight liftoff, altitude, and duration are constrained by the relationships between wing size, body weight, wingbeat frequency, and air temperature. We parameterized this model with observations from moths captured in traps or observed migrating under field conditions. We further documented the effects of prior defoliation on the size and weight (including fecundity) of migrating moths. Our simulations under idealized nocturnal conditions with a stable atmospheric boundary layer suggest that the ability of gravid female moths to migrate is conditional on the progression of egg-laying. The model also predicts that the altitude at which moths migrate varies with the temperature profile in the boundary layer and with time during the evening and night. Model results have implications for the degree to which long-distance dispersal by spruce budworm might influence population dynamics in locations distant from outbreak sources, including how atmospheric phenomena such as wind convergence might influence these processes. To simulate actual migration flights en masse, the proposed model will need to be linked to regional maps of insect populations, a phenology model, and weather model outputs of both large- and small-scale atmospheric conditions.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3