Banana Leaf Surface’s Janus Wettability Transition from the Wenzel State to Cassie–Baxter State and the Underlying Mechanism

Author:

Jiang YinlongORCID,Yang Zhou,Jiang Tingting,Shen Dongying,Duan JieliORCID

Abstract

Janus wettability plays an important role in certain special occasions. In this study, field emission scanning electron microscopy (FESEM) was used to observe the surface microstructure of banana leaves, the static wettability of the banana leaf surface was tested, and the dynamic response of water droplets falling at different heights and hitting on the adaxial and abaxial sides was studied. The study found that the nanopillars on the adaxial and abaxial sides of the banana leaf were different in shape. The nanopillars on the adaxial side were cone-shaped with large gaps, showing hydrophilicity (Wenzel state), and the heads of the nanopillars on the abaxial side were smooth and spherical with small gaps, showing weak hydrophobicity (Cassie–Baxter state). Banana leaves show Janus wettability, and the banana leaf surface has high adhesion properties. During the dynamic impact test, the adaxial and abaxial sides of the banana leaves showed different dynamic responses, and the wettability of the adaxial side of the banana leaves was always stronger than the abaxial side. Based on the structural parameters of nanopillars on the surface of the banana leaf and the classical wetting theory model, an ideal geometric model around a single nanopillar on both sides of the banana leaf was established. The results show that the established model has high accuracy and can reflect the experimental results effectively. When the apparent contact angle was 76.17°, and the intrinsic contact angle was 81.17° on the adaxial side of the banana leaf, steady hydrophilicity was shown. The abaxial side was similar. The underlying mechanism of Janus wettability on the banana leaf surface was elucidated. This study provides an important reference for the preparation of Janus wettability bionic surfaces and the efficient and high-quality management of banana orchards.

Funder

the Laboratory of Lingnan Modern Agriculture Project

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3