Gradient Wetting Transition from the Wenzel to Robust Cassie-Baxter States along Nanopillared Cicada Wing and Underlying Mechanism

Author:

Xie Heng,Huang Hanxiong

Abstract

AbstractGradient wettability is important for some living organisms. Herein, the dynamic responses of water droplets impacting on the surfaces of four regions along the wing vein of cicada Cryptotympana atrata fabricius are investigated. It is revealed that a gradient wetting behavior from hydrophilicity (the Wenzel state) to hydrophobicity and further to superhydrophobicity (the Cassie-Baxter state) appears from the foot to apex of the wing. Water droplets impacting on the hydrophilic region of the wing cannot rebound, whereas those impacting on the hydrophobic region can retract and completely rebound. The hydrophobic region exhibits robust water-repelling performance during the dynamic droplet impact. Moreover, a droplet sitting on the hydrophobic region can recover its spherical shape after squeezed to a water film as thin as 0.45 mm, and lossless droplet transportation can be achieved at the region. Based on the geometric parameters of the nanopillars at the hydrophilic and hydrophobic regions on the cicada wing, two wetting models are developed for elucidating the mechanism for the gradient wetting behavior. This work directs the design and fabrication of surfaces with gradient wetting behavior by mimicking the nanopillars on cicada wing surface.

Publisher

Springer Science and Business Media LLC

Subject

Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3