Intelligent Bearing Fault Diagnosis Based on Feature Fusion of One-Dimensional Dilated CNN and Multi-Domain Signal Processing

Author:

Dong Kaitai1,Lotfipoor Ashkan2ORCID

Affiliation:

1. Mindsphere Analytics Centre, Digital Service, Siemens Mobility, London NW1 1AD, UK

2. Institute for Infrastructure and Environment, Heriot-Watt University, Edinburgh EH14 4AS, UK

Abstract

Finding relevant features that can represent different types of faults under a noisy environment is the key to practical applications of intelligent fault diagnosis. However, high classification accuracy cannot be achieved with only a few simple empirical features, and advanced feature engineering and modelling necessitate extensive specialised knowledge, resulting in restricted widespread use. This paper has proposed a novel and efficient fusion method, named MD-1d-DCNN, that combines statistical features from multiple domains and adaptive features retrieved using a one-dimensional dilated convolutional neural network. Moreover, signal processing techniques are utilised to uncover statistical features and realise the general fault information. To offset the negative influence of noise in signals and achieve high accuracy of fault diagnosis in noisy settings, 1d-DCNN is adopted to extract more dispersed and intrinsic fault-associated features, while also preventing the model from overfitting. In the end, fault classification based on fusion features is accomplished by the usage of fully connected layers. Two bearing datasets containing varying amounts of noise are used to verify the effectiveness and robustness of the suggested approach. The experimental results demonstrate MD-1d-DCNN’s superior anti-noise capability. When compared to other benchmark models, the proposed method performs better at all noise levels.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3